THE CRYSTAL STRUCTURE OF BROMO(TRIBROMOGERMYL)-2,2'-B1PYRIDINETRICARBONYLTUNGSTEN

ELISABETH M. CRADWICK AND D. HALL
Department of Chenistry, University of Alberta, Edmonton, Alberta (Canada)
(Received June 6th, 1970)

SUMMARY

The crystal structure of 2,2'-bipyridine $(\mathrm{CO})_{3} \mathrm{BrWGeBr}_{3}$ has been determined, using three-dimensional counter data. The structure was refined by least squares to an R index of 0.10 . The crystals are monoclinic, $a=8.62, b=16.15, c=13.58 \AA, \beta=90.3^{\circ}$, space group $P 2_{1} / c$. The molecule contains $\operatorname{Bipy}(\mathrm{CO})_{3} \mathrm{BrW}$ and GeBr_{3} residues connected by a $W-G e$ bond of length $2.608 \AA$. Unlike the situation in other similar molecules, the bromine attached to the tungsten does not bridge the W-Ge bond, and the geometry of the coordination of the heptacoordinate molybdenum is that of capped octahedron rather than capped trigonal prism.

INTRODUCTION

The geometry of ligand atoms about a central metal may often be predicted ${ }^{1}$ with considerable accuracy for lower coordination numbers, but this is more difficult to do for coordination number seven. The three"ideal"heptacoordinate configurations, viz. the capped trigonal prism, the capped octahedron and the pentagonal bipyramid, do not differ greatly in energy, and it has been suggested ${ }^{2}$ that because of this there may be no consistently adopted configuration for a particular molecule type. A molecule may even show different configurations in different physical states, as such influences as packing or solvent association energy may be sufficient to alter the energy balance, and similarly, quite subtle chemical differences between compounds may prove to be definitive.

A series of compounds has been described ${ }^{3}$, of general formula $\mathrm{Y}(\mathrm{CO})_{3}$ MMRX_{3}, where Y is $2,2^{\prime}$-bipyridine(Bipy) or dithiohexane, M is tungsten or molybdenum, M^{\prime} is tin or germanium, X is a halogen and R is either a halogen or an alkyl group. The IR spectra of these compounds in dichloromethane solution may show two distinct sets of three bands in the carbonyl stretching region, relative intensities of the two sets varying as $\mathrm{Mo} \rightarrow \mathrm{W}, \mathrm{Sn} \rightarrow \mathrm{Ge}, \mathrm{Cl} \rightarrow \mathrm{Br} \rightarrow \mathrm{I}$, alkyl $\mathrm{M}^{\prime} \mathrm{X}_{3} \rightarrow \mathrm{MX}_{4}$. Thus $\operatorname{Bipy}(\mathrm{CO})_{3} \mathrm{MoSnCH}_{3} \mathrm{Cl}_{3}$ (I) showed bands of one set only, Bipy(CO) $)_{3} \mathrm{WGeI}_{4}$ (II) those of the other. Compounds intermediate in the series, e.g. Bipy (CO) $\mathbf{W G E B r}_{4}$ (III), gave mixed spectra containing four or five resolvable bands. It appeared that the molybdenum or tungsten atom was heptacoordinate, and it was suggested that the
spectral differences correspond to different coordination geometries, and that in the intermediate cases distinct isomers may co-exist in dichloromethane solution. Crystal structure analysis of (I) has shown ${ }^{4}$ it to contain $\operatorname{Bipy}(\mathrm{CO})_{3} \mathrm{Mo}$ and $\mathrm{SnCH}_{3} \mathrm{Cl}_{2}$ residues, linked by a direct $\mathrm{Mo}^{-} \mathrm{Sn}$ bond and also by a chlorine bridge

thus displaying seven-coordinate molybdenum and five-coordinate tin. The spectrum of (dithiohexane) $\mathrm{WSnCH}_{3} \mathrm{Cl}_{3}$ (IV) shows the same set of stretching frequencies, and the compound has essentially the same structure ${ }^{5}$.Attempts to determine the structure of compounds which show the alternative set, viz. (II) and its molybdenum analogue, were thwarted by the fact that the crystals are disordered ${ }^{6}$. Consequently the structure of the intermediate spectral type compound (III) has been studied, in the hope that it may indicate the nature of the alternative geometry.

EXPERIMENTAL

Deep red prismatic crystals of $\operatorname{Bipy}(\mathrm{CO})_{3} \mathrm{WGeBr}_{4}$ were supplied by Dr. W. A. G. Graham. These were monoclinic, $a=8.62 \pm 0.01, b=16.15 \pm 0.02, c=$ $13.58 \pm 0.01 \AA, \beta=90.3 \pm 0.2^{\circ}, d_{\mathrm{o}}=2.73, d_{\mathrm{c}}=2.81 \mathrm{~g} \cdot \mathrm{~cm}^{-3}$ for 4 molecules per unit cell, space group $P 2_{1} / c$. The cell parameters were obtained from precession photographs, taken with $\mathrm{Cu}-\mathrm{K} \alpha$ radiation.

Intensity data were collected using a PAILRED automated diffractometer, which employed crystal monochromated Mo-K α radiation. The procedure adopted has been described elsewhere ${ }^{4}$. Of 2900 reflections scanned, 1100 were deemed to be significantly above background $(\sigma(I) / I>0.35$). No reflections were observable for $\sin \theta>0.43$. The crystal was mounted about a, and was of dimensions $0.258 \times 0.129 \times$ 0.129 mm parallel to a, b and c respectively.

Structure determination and refinement

The tungsten and four of the other heavy atoms were readily located from a Patterson synthesis, and all remaining atoms from subsequent Fourier syntheses. Refinement was by full matrix least squares, assuming anisotropic thermal motion for the heavy atoms and isotropic motion for the light atoms. Atomic scattering factors were as in the International Tables ${ }^{7}$, with real dispersion corrections for the tungsten and bromine atoms. In the later cycles correction was made for anomalous dispersion. The least squares weights were calculated assuming that $\sigma(I)=\left(I+t^{2} \cdot B+K \cdot I^{2}\right)^{\frac{1}{2}}$, where I is the intensity, t the ratio of scan time to background count time, B the total background count and K an internally optimised constant, taken as 0.06 . The R index converged at 0.102 , and intensities were then corrected for absorption, but this had little effect and the final value for R was 0.100 .

RESULTS AND DISCUSSION

Atom coordinates are listed in Table 1, thermal parameters in Table 2, observed and calculated structure factors in Table 3. The molecule is shown in Fig. 1,

TABLE I
atom coordinates

Atom	x / a	y / b	z/c	Atom	x / a	y / b	z / c
W	0.3249(2)	0.1983(1)	0.3478(2)	C(2)	$0.138(7)$	0.029(4)	0.585(4)
Ge	0.4270(6)	$0.0816(4)$	0.2360(4)	C(3)	0.013(6)	0.079(4)	0.625(4)
$\mathrm{Br}(1)$	0.0683(6)	0.1476 (4)	0.2669(5)	C(4)	-0.014(6)	0.157(4)	0.590(4)
$\operatorname{Br}(2)$	0.3324(8)	0.0679(5)	$0.0797(5)$	C(5)	0.080(5)	0.184(3)	0.519(3)
$\mathrm{Br}(3)$	$0.4013(9)$	-0.0482(4)	0.2992(6)	C(6)	$0.061(4)$	0.265(2)	0.479(3)
$\mathrm{Br}(4)$	$0.6893(7)$	0.0848(5)	$0.1979(6)$	C(7)	-0.058(6)	$0.318(3)$	0.510(4)
$\mathrm{O}(1)$	$0.608(4)$	0.119(2)	0.452(3)	C(8)	-0.078(6)	0.393 (3)	0.463(4)
$\mathrm{O}(2)$	0.564(5)	0.330(3)	0.411 (3)	C(9)	$0.023(6)$	0.417(3)	0.390(4)
$\mathrm{O}(3)$	0.428(5)	0.272(3)	0.148 (3)	C(10)	0.148 (7)	0.366 (4)	0.356(4)
N(1)	$0.206(5)$	$0.146(3)$	0.477(3)	C(11)	$0.504(6)$	$0.152(3)$	0.401 (4)
N(2)	0.164(5)	0.290(3)	0.407(3)	C(12)	0.469(6)	0.285(3)	0.389(4)
C(1)	0.240(6)	0.068(3)	$0.515(4)$	C(13)	0.385(6)	0.249(4)	0.226(4)

TABLE 2
thermal parameters (\AA^{2})

Anisotropic atom	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
W						
Ge	$0.026(1)$	$0.043(1)$	$0.057(2)$	$0.000(1)$	$0.001(1)$	$0.003(2)$
$\mathrm{Br}(1)$	$0.031(3)$	$0.053(4)$	$0.052(4)$	$-0.002(3)$	$0.002(3)$	$0.002(3)$
$\operatorname{Br}(2)$	$0.035(3)$	$0.075(5)$	$0.080(5)$	$-0.009(3)$	$-0.003(3)$	$-0.010(4)$
$\operatorname{Br}(3)$	$0.070(5)$	$0.102(6)$	$0.093(6)$	$-0.008(4)$	$-0.007(4)$	$-0.007(5)$
$\operatorname{Br}(4)$	$0.096(5)$	$0.062(5)$	$0.109(6)$	$0.011(4)$	$0.034(5)$	$0.012(4)$

Isotropic atom	B	Atom	B	Atom	B
$O(1)$	$5.4(0.9)$	$\mathrm{C}(2)$	$5.1(1.3)$	$\mathrm{C}(8)$	$4.1(1.2)$
$\mathrm{O}(2)$	$6.7(1.0)$	$\mathrm{C}(3)$	$5.1(1.4)$	$\mathrm{C}(9)$	$4.1(1.2)$
$\mathrm{O}(3)$	$7.2(1.1)$	$\mathrm{C}(4)$	$4.7(1.3)$	$\mathrm{C}(10)$	$6.2(1.5)$
$\mathrm{N}(1)$	$4.3(0.9)$	$\mathrm{C}(5)$	$2.1(0.9)$	$\mathrm{C}(11)$	$4.7(1.3)$
$\mathrm{N}(2)$	$4.3(0.9)$	$\mathrm{C}(6)$	$1.4(0.8)$	$\mathrm{C}(12)$	$4.6(1.3)$
$\mathrm{C}(1)$	$4.5(1.3)$	$\mathrm{C}(7)$	$4.0(1.1)$	$\mathrm{C}(13)$	$4.7(1.3)$

and a stereodiagram of the structure in Fig. 2. Bond lengths and angles are listed in Table 4.

The molecule is essentially similar in structure to (I), in that the tungsten atom is seven-coordinate, with the bidentate Bipy, three carbonyls, a bromine atom and the GeBr_{3} group as ligands. It differs in that the bromine atom attached to the tungsten is $3.31 \AA$ from the germanium, and thus cannot be considered to be bonded to the germanium atom also. [By comparison, the corresponding $\mathrm{Cl}-\mathrm{Sn}$ approach ${ }^{4}$ in (I) is $2.805 \AA$.] It differs also in that the geometrical arrangement of the seven ligand atoms around the tungsten atom is not a capped octahedron, but closely approximates a
(continüed p. 96)
J. Organometal. Chem., 25 (1970) 91-99
TABLE 3
obser ved and calculated structure factors ($\times 10$)

Fig. 1. The $\mathrm{Bipy}(\mathrm{CO})_{3} \mathrm{BrGeBr}_{3}$ molecule.
Fig. 2. A stereo-diagram of the structure.
capped trigonal prism, with the bromine atom, $\operatorname{Br}(1)$, above the centre of one of the square faces, as shown in Fig. 3. The bromine is more or less equidistant from the four atoms which comprise the capped face, the separations ranging from $\mathrm{Br}(1)-\mathrm{W}(1)$ at $3.08 \AA$ to $\mathrm{Br}(1)-\mathrm{Ge}$ at $3.31 \AA$. The major distortions from regularity of the prism appear to be associated with the presence of the capping bromine, and with the fact that the $\mathrm{W}-\mathrm{Ge}$ bond, at $2.608 \AA$ is considerably longer than the tungsten-light atom bonds. Thus the edge $N(2)-C(13)$ is $3.19 \AA$ whereas the edge $N(2)-C(12)$ is $2.64 \AA$, and the prism angles about a vertex which ideally should be of $60^{\circ}, 90^{\circ}$ and 90°, are $44^{\circ}, 69^{\circ}, 73^{\circ}$ about the germanium and $54^{\circ}, 100^{\circ}, 105^{\circ}$ about $\mathrm{C}(13)$.

The W -Ge bond length of $2.608(6) \AA$ may be compared with the $\mathrm{W}-\mathrm{Sn}$ bond

Fig. 3. The capped trigonal prismatic arrangement of ligand atoms about the tungsten.

Iength of 2.759 (3) \AA in (IV). The germanium covalent radius has been estimated ${ }^{7}$ at $1.22 \AA$, although in view of the fact that the $\mathrm{Ge}-\mathrm{Br}$ bond length in GeHBr_{3} has been reported ${ }^{8}$ as $2.298(3) \AA$, a value of $1.16 \AA$ might be more appropriate. In either case the germanium radius appears to be much smaller than that of $\operatorname{tin}^{9}, 1.39 \AA$, and the shorter length of the W-Ge bond is thus accounted for by the decreased size of the Group IV metal. A value of $1.58 \AA$ for the radius of tungsten has been estimated ${ }^{10}$ from the tung-

TABLE 4
bond Lengths (\AA) and bond angles (${ }^{\circ}$)

W-Ge	2.608(6)	$\mathrm{N}(2)-\mathrm{C}(10)$	1.44(8)
W-Br(1)	$2.603(6)$	C (1)-C(2)	1.45 (8)
W-C(11)	1.86 (6)	$\mathrm{C}(2)-\mathrm{C}(3)$	1.45(8)
$\mathrm{W}-\mathrm{C}(12)$	1.97(6)	$\mathrm{C}(3)-\mathrm{C}(4)$	1.39(8)
W-C(13)	1.92(6)	$\mathrm{C}(4)-\mathrm{C}(5)$	1.35(7)
$\mathrm{W}-\mathrm{N}(1)$	2.21 (4)	C(5)-C(6)	1.44(6)
$\mathrm{W}-\mathrm{N}(2)$	2.20(4)	C(6)-C(7)	1.41 (6)
$\mathrm{Ge}-\mathrm{Br}(2)$	2.280 (9)	C (7)-C(8)	1.41 (8)
$\mathrm{Ge}-\mathrm{Br}(3)$	2.319(9)	$\mathrm{C}(8)-\mathrm{C}(9)$	$1.38(8)$
$\mathrm{Ge}-\mathrm{Br}(4)$	$2.322(8)$	$\mathrm{C}(9)-\mathrm{C}(10)$	1.45(8)
$\mathrm{N}(1)-\mathrm{C}(1)$	1.41(7)	$\mathrm{C}(11)-\mathrm{O}(1)$	1.26 (7)
$\mathrm{N}(1)-\mathrm{C}(5)$	1.39(6)	$\mathrm{C}(12)-\mathrm{O}(2)$	1.14(7)
$\mathrm{N}(2)-\mathrm{C}(10)$	1.38 (6)	$\mathrm{C}(13)-\mathrm{O}(3)$	1.19(7)
$\mathrm{Ge}-\mathrm{W}-\mathrm{Br}(1)$	78.8(2)	$\mathrm{Br}(2)-\mathrm{Ge}-\mathrm{Br}(3)$	102.6(4)
$\mathrm{Ge}-\mathrm{W}-\mathrm{C}(11)$	69(2)	$\mathrm{Br}(2)-\mathrm{Ge}-\mathrm{Br}(4)$	98.0(3)
$\mathrm{Ge}-\mathrm{W}-\mathrm{C}(12)$	119(2)	$\mathrm{Br}(3)-\mathrm{Ge}-\mathrm{Br}(4)$	101.4(3)
$\mathrm{Ge}-\mathrm{W}-\mathrm{C}(13)$	74(2)	W-C(11)-O(1)	168(5)
$\mathrm{Ge}-\mathrm{W}-\mathrm{N}(1)$	109(1)	$\mathrm{W}-\mathrm{C}(12)-\mathrm{O}(2)$	173(5)
$\mathrm{Ge}-\mathrm{W}-\mathrm{N}(2)$	159(1)	$\mathrm{W}-\mathrm{C}(13)-\mathrm{O}(3)$	173(5)
$\mathrm{Br}(1)-\mathrm{W}-\mathrm{C}(11)$	137(2)	$\mathrm{W}-\mathrm{N}(1)-\mathrm{C}(1)$	124(3)
$\mathrm{Br}(1)-\mathrm{W}-\mathrm{C}(12)$	152(2)	$\mathrm{W}-\mathrm{N}(1)-\mathrm{C}(5)$	$121(3)$
$\operatorname{Br}(1)-\mathrm{W}-\mathrm{C}(13)$	91 (2)	$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(5)$	115(4)
$\mathrm{Br}(1)-\mathrm{W}-\mathrm{N}(1)$	79(1)	$\mathrm{W}-\mathrm{N}(2)-\mathrm{C}(10)$	119(3)
$\mathrm{Br}(1)-\mathrm{W}-\mathrm{N}(2)$	81(1)	$\mathrm{W}-\mathrm{N}(2)-\mathrm{C}(6)$	$117(3)$
$\mathrm{C}(11)-\mathrm{W}-\mathrm{C}(12)$	$71(2)$	$\mathrm{C}(6)-\mathrm{N}(2)-\mathrm{C}(10)$	123(4)
$\mathrm{C}(11)-\mathrm{W}-\mathrm{C}(13)$	106(3)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{N}(1)$	$121(5)$
$\mathrm{C}(11)-\mathrm{W}-\mathrm{N}(1)$	85(2)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	117(5)
$\mathrm{C}(11)-\mathrm{W}-\mathrm{N}(2)$	132(2)	$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	121 (5)
$\mathrm{C}(12)-\mathrm{W}-\mathrm{C}(13)$	76(2)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$	117 (5)
$\mathrm{C}(12)-\mathrm{W}-\mathrm{N}(1)$	$111(2)$	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	121 (4)
$\mathrm{C}(12)-\mathrm{W}-\mathrm{N}(2)$	78(2)	$\mathrm{C}(4) \mathrm{C}(5)-\mathrm{N}(1)$	128(4)
$\mathrm{C}(13)-\mathrm{W}-\mathrm{N}(1)$	168(2)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{N}(1)$	111(4)
$\mathrm{C}(13)-\mathrm{W}-\mathrm{N}(2)$	101(2)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	123(4)
$\mathrm{N}(1)-\mathrm{W}-\mathrm{N}(2)$	72(2)	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{N}(2)$	118(4)
$\mathrm{W}-\mathrm{Ge}-\mathrm{Br}(1)$	50.5(2)	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{N}(2)$	120(4)
W-Ge-Br(2)	119.7(3)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$	120(4)
$\mathrm{W}-\mathrm{Ge}-\mathrm{Br}(3)$	115.7(3)	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	120(5)
W-Ge-Br(4)	116.4(3)	$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	122 (5)
		$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{N}(2)$	115(5)

sten-carbonyl bond length of $1.96 \AA$ in $\left(\pi-\mathrm{C}_{5} \mathrm{H}_{5}\right) \mathrm{C}_{6} \mathrm{H}_{5}(\mathrm{CO})_{3} \mathrm{~W}$, and this is in fair agreement with the $1.61 \AA$ which may be deduced from the observations that the $\mathrm{W}-\mathrm{Sn}$ and $\mathrm{Mo}-\mathrm{Sn}$ bond lengths are near identical in (IV) and (I) respectively, and that $3.22 \AA$ is the length of a Mo-Mo single bond ${ }^{11}$. On these estimates the calculated $\mathrm{W}-\mathrm{Ge}$ single bond length would be in the range 2.74-2.83 \AA, and although there are no other experimental data on this bond for comparison, the observed value of $2.608 \AA$ must indicate that in the present compound the bond order is greater than one.

The coordination about the germanium is approximately tetrahedral, with the angles somewhat distorted by the greater repulsions associated with the tungsten atom. The average $\mathrm{Br}-\mathrm{Ge}-\mathrm{Br}$ angle is thus 100°, compared with the average $\mathrm{W}-\mathrm{Ge}-\mathrm{Br}$
of 117°. In fact the range of angle about the germanium, $98-120^{\circ}$, is smaller than the range for the corresponding angles in (IV), 97-124 ${ }^{\circ}$, and in (I), 95-127 ${ }^{\circ}$, but much less so than might have been expected in view of the fact that in the latter two molecules there is an additional close approaching halogen, and that the coordination about the tin atom was then described as distorted trigonal bipyramidal. Consideration of inter-ligand angles would thus seem a weak basis on which to justify the latter description. It may be more significant that in (I), in which compound the fifth ligand makes the closest approach to the tin, the "axial" $\mathrm{Sn}-\mathrm{Cl}$ bond is very significantly longer than the "equatorial" $\mathrm{Sn}-\mathrm{Cl}$ bond, whereas in the present molecule, the three $\mathrm{Ge}-\mathrm{Br}$ bond lengths are equal, within error, and none differs significantly from the value observed ${ }^{8}$ in HGeBr_{3}.

It is instructive to consider the geometry of the coordination about the tungsten atom in this compound, and the corresponding atoms in (I) and (II), in terms of tetragonal base-trigonal base geometry. A capped trigonal prism can be described as a polygon in which four vertices are those of a plane quadrilateral face, and the remaining three of a parallel triangular face, oriented as in Fig. 4(i). The capped

Fig. 4. Tetragonal base-trigonal base geometries.
Fig. 5. (a). The arrangement of ligand atoms in $\operatorname{Bipy}(\mathrm{CO})_{3} \mathrm{BrGeBr}_{3}$, viewed down the tetragonal basetrigonal base 'axis'. (b) The corresponding arrangement in $\mathrm{Bipy}(\mathrm{CO})_{3} \mathrm{ClSnCH}_{3} \mathrm{Cl}_{2}$.
octahedron, can, with some symmetrical distortion, be described on a similar basis with the two faces relatively rotated by 45°, as in Fig. 4 (ii) ${ }^{12}$. The geometries of the two isomers of $\mathrm{S}_{2} \mathrm{Fe}_{3}(\mathrm{CO})_{9}$, in which the iron is heptacoordinate, have been shown ${ }^{12}$ to differ in just this way. The ligand distribution, viewed as for Fig. 4, is shown in Fig. 5 for the present compound and for (I), and thus for the former $\mathrm{Ge}, \mathrm{C}(11), \mathrm{C}(12)$ and $C(13)$ comprise the tetragonal base, and $N(1), N(2)$ and $\operatorname{Br}(1)$ the trigonal. It
appears that the determining factor controlling the relative rotation of the two, and thus the coordination geometry, could well be the strength of the attraction between the Group IV metal and the halogen, and as the variations in molecular composition which have been observed to affect the carbonyl stretching frequencies in dichloromethane solution could also be reflecting just this attraction, it is suggested that this is the nature of the isomerism postulated ${ }^{3}$.

ACKNOWLEDGEMENTS

We are indebted to Dr. W. A. G. Graham for supplying the crystals and for valuable discussions, and to the National Research Council of Canada for financial assistance.

REFERENCES

1 R. J. Gillespie and R. S. Nyholm, Quart. Rev. Chem. Soc., 11 (1957) 339.
2 E. L. Muetierties and C. M. Wright, Quart. Rev. Chem. Soc., 21 (1967) 109.
3 R. Kummer and W. A. G. Graham, Inorg. Chem., 7 (1968) 310.
4 M. Elder and D. Hall, Inorg. Chem.. 8 (1969) 1268.
5 M. Elder and D. Hall. Inorg. Chem.. 8 (1969) 1273.
6 M. Elder, private communication.
7 L. Pauling, The Nature of the Chemical Bond, Cornell University Press. Ithaca, N.Y.. 1960. p. 246
8 J. M. Mays and B. P. Dailey, J. Chem. Phys., 20 (1952) 1695.
9 D. H. Olson and R. E. Rundle, Inorg. Chem., 2 (1963) 1310.
10 V. A. Semion, Y. A. Chapovskif. Y. T. Struchkov and A. N. Nesmeyanov. Chem. Commum., (1968) 666.

11 F. C. Wilson and D. P. Shoemaker. J. Chem. Phys., 27 (1957) 809.
12 C. H. Wei and L. F. Dahl, Inorg. Chem., 4 (1965) 493.

